Ladder Heights , Gaussian Random Walks , and the Riemann Zeta Function

نویسنده

  • Joseph T. Chang
چکیده

Yale University and University of California, Berkeley Let Sn n ≥ 0 be a random walk having normally distributed increments with mean θ and variance 1, and let τ be the time at which the random walk first takes a positive value, so that Sτ is the first ladder height. Then the expected value EθSτ, originally defined for positive θ, may be extended to be an analytic function of the complex variable θ throughout the entire complex plane, with the exception of certain branch point singularities. In particular, the coefficients in a Taylor expansion about θ = 0 may be written explicitly as simple expressions involving the Riemann zeta function. Previously only the first coefficient of the series developed here was known; this term has been used extensively in developing approximations for boundary crossing problems for Gaussian random walks. Knowledge of the complete series makes more refined results possible; we apply it to derive asymptotics for boundary crossing probabilities and the limiting expected overshoot.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Random matrices and L-functions

In recent years there has been a growing interest in connections between the statistical properties of number theoretical L-functions and random matrix theory. We review the history of these connections, some of the major achievements and a number of applications. PACS numbers: 02.10.De, 02.10.Yn 1. The history in brief Number theory and random matrix theory met, by chance, over a cup of tea in...

متن کامل

Numerical Study of the Derivative of the Riemann Zeta Function at Zeros

The derivative of the Riemann zeta function was computed numerically on several large sets of zeros at large heights. Comparisons to known and conjectured asymptotics are presented.

متن کامل

A Note On The Erlang(λ, n) Risk Process

We consider the Erlang(λ, n) risk process with i.i.d. exponentially distributed claims severities. We prove that the ruin probability is a strictly decreasing function in n if we keep the expected interarrival times between two successive claims constant. In the limit case we obtain Lundberg’s fundamental equation in the discrete time risk model (ladder heights of random walks).

متن کامل

A pseudo-unitary ensemble of random matrices, PT-symmetry and the Riemann Hypothesis

An ensemble of 2 × 2 pseudo-Hermitian random matrices is constructed that possesses real eigenvalues with level-spacing distribution exactly as for the Gaussian unitary ensemble found by Wigner. By a re-interpretation of Connes’ spectral interpretation of the zeros of Riemann zeta function, we propose to enlarge the scope of search of the Hamiltonian connected with the celebrated Riemann Hypoth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996